Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims.The goal of this project is to construct an estimator for the masses of supermassive black holes in active galactic nuclei (AGNs) based on the broad Hαemission line. Methods.We made use of published reverberation mapping data. We remeasured all Hαtime lags from the original data as we find that reverberation measurements are often improved by detrending the light curves. Results.We produced mass estimators that require only the Hαluminosity and the width of the Hαemission line as characterized by either the full width at half maximum or the line dispersion. Conclusions.It is possible, on the basis of a single spectrum covering the Hαemission line, to estimate the mass of the central supermassive black hole in AGNs with all three parameters believed to affect mass measurement – luminosity, line width, and Eddington ratio – taken into account. The typical formal accuracy in such estimates is of order 0.2–0.3 dex relative to the reverberation-based masses.more » « lessFree, publicly-accessible full text available April 1, 2026
-
ABSTRACT We report on the discovery of one of the most extreme cases of high-frequency radio variability ever measured in active galactic nuclei (AGNs), observed on time-scales of days and exhibiting variability amplitudes of 3–4 orders of magnitude. These sources, all radio-weak narrow-line Seyfert 1 (NLS1) galaxies, were discovered some years ago at Aalto University Metsähovi Radio Observatory (MRO) based on recurring flaring at 37 GHz, strongly indicating the presence of relativistic jets. In subsequent observations with the Karl G. Jansky Very Large Array (JVLA) at 1.6, 5.2, and 9.0 GHz no signs of jets were seen. To determine the cause of their extraordinary behaviour, we observed them with the JVLA at 10, 15, 22, 33, and 45 GHz, and with the Very Long Baseline Array (VLBA) at 15 GHz. These observations were complemented with single-dish monitoring at 37 GHz at MRO, and at 15 GHz at Owens Valley Radio Observatory (OVRO). Intriguingly, all but one source either have a steep radio spectrum up to 45 GHz, or were not detected at all. Based on the 37 GHz data, the time-scales of the radio flares are a few days, and the derived variability brightness temperatures and variability Doppler factors are comparable to those seen in blazars. We discuss alternative explanations for their extreme behaviour, but so far no definite conclusions can be made. These sources exhibit radio variability at a level rarely, if ever, seen in AGN. They might represent a new type of jetted AGN, or a new variability phenomenon, and thus deserve our continued attention.more » « less
-
Abstract In the past 5 yr, six X-ray quasi-periodic eruption (QPE) sources have been discovered in the nuclei of nearby galaxies. Their origin remains an open question. We present Multi Unit Spectroscopic Explorer integral field spectroscopy of five QPE host galaxies to characterize their properties. We find that 3/5 galaxies host extended emission-line regions (EELRs) up to 10 kpc in size. The EELRs are photoionized by a nonstellar continuum, but the current nuclear luminosity is insufficient to power the observed emission lines. The EELRs are decoupled from the stars both kinematically and in projected sky position, and the low velocities and velocity dispersions (<100 km s−1and ≲75 km s−1, respectively) are inconsistent with being driven by active galactic nuclei (AGNs) or shocks. The origin of the EELRs is likely a previous phase of nuclear activity. QPE host galaxies share several similarities with tidal disruption event (TDE) hosts, including an overrepresentation of galaxies with strong Balmer absorption and little ongoing star formation, as well as a preference for a short-lived (the typical EELR lifetime is ∼15,000 yr), gas-rich phase where the nucleus has recently faded significantly. This suggests that QPEs and TDEs may share a common formation channel, disfavoring AGN accretion disk instabilities as the origin of QPEs. If QPEs are related to extreme mass ratio inspiral systems (EMRIs), e.g., stellar-mass objects on bound orbits about massive black holes, the high incidence of EELRs and recently faded nuclei could be used to localize the hosts of EMRIs discovered by low-frequency gravitational-wave observatories.more » « less
-
null (Ed.)In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.more » « less
-
null (Ed.)ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $$M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $$ and an ejecta opacity $$\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$$. A CSM-interaction scenario would imply a CSM mass $$\simeq 5\, \mathrm{M}_\odot $$ and an ejecta mass $$\simeq 12\, \mathrm{M}_\odot $$. Finally, the nebular spectrum of phase + 187 d was modeled, deriving a mass of $$\sim 10\, {\rm M}_\odot$$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($$40\, {\rm M}_\odot$$) star.more » « less
An official website of the United States government
